529 lines
12 KiB
TypeScript
529 lines
12 KiB
TypeScript
import { isPoint, pointDistance, pointFrom, pointFromVector } from "./point";
|
|
import { rectangle, rectangleIntersectLineSegment } from "./rectangle";
|
|
import { vector, vectorNormal, vectorNormalize, vectorScale } from "./vector";
|
|
import { LegendreGaussN24CValues, LegendreGaussN24TValues } from "./constants";
|
|
|
|
import type { Curve, GlobalPoint, LineSegment, LocalPoint } from "./types";
|
|
|
|
/**
|
|
*
|
|
* @param a
|
|
* @param b
|
|
* @param c
|
|
* @param d
|
|
* @returns
|
|
*/
|
|
export function curve<Point extends GlobalPoint | LocalPoint>(
|
|
a: Point,
|
|
b: Point,
|
|
c: Point,
|
|
d: Point,
|
|
) {
|
|
return [a, b, c, d] as Curve<Point>;
|
|
}
|
|
|
|
/**
|
|
* Computes the intersection between a cubic spline and a line segment.
|
|
*/
|
|
export function curveIntersectLineSegment<
|
|
Point extends GlobalPoint | LocalPoint,
|
|
>(c: Curve<Point>, l: LineSegment<Point>): Point[] {
|
|
// Optimize by doing a cheap bounding box check first
|
|
const [p0, p1, p2, p3] = c;
|
|
|
|
if (
|
|
rectangleIntersectLineSegment(
|
|
rectangle(
|
|
pointFrom(
|
|
Math.min(p0[0], p1[0], p2[0], p3[0]),
|
|
Math.min(p0[1], p1[1], p2[1], p3[1]),
|
|
),
|
|
pointFrom(
|
|
Math.max(p0[0], p1[0], p2[0], p3[0]),
|
|
Math.max(p0[1], p1[1], p2[1], p3[1]),
|
|
),
|
|
),
|
|
l,
|
|
).length === 0
|
|
) {
|
|
return [];
|
|
}
|
|
|
|
const line = (s: number) =>
|
|
pointFrom<Point>(
|
|
l[0][0] + s * (l[1][0] - l[0][0]),
|
|
l[0][1] + s * (l[1][1] - l[0][1]),
|
|
);
|
|
|
|
const initial_guesses: [number, number][] = [
|
|
[0.5, 0],
|
|
[0.2, 0],
|
|
[0.8, 0],
|
|
];
|
|
|
|
const calculate = ([t0, s0]: [number, number]) => {
|
|
const solution = solve(
|
|
(t: number, s: number) => {
|
|
const bezier_point = bezierEquation(c, t);
|
|
const line_point = line(s);
|
|
|
|
return [
|
|
bezier_point[0] - line_point[0],
|
|
bezier_point[1] - line_point[1],
|
|
];
|
|
},
|
|
t0,
|
|
s0,
|
|
);
|
|
|
|
if (!solution) {
|
|
return null;
|
|
}
|
|
|
|
const [t, s] = solution;
|
|
|
|
if (t < 0 || t > 1 || s < 0 || s > 1) {
|
|
return null;
|
|
}
|
|
|
|
return bezierEquation(c, t);
|
|
};
|
|
|
|
let solution = calculate(initial_guesses[0]);
|
|
if (solution) {
|
|
return [solution];
|
|
}
|
|
|
|
solution = calculate(initial_guesses[1]);
|
|
if (solution) {
|
|
return [solution];
|
|
}
|
|
|
|
solution = calculate(initial_guesses[2]);
|
|
if (solution) {
|
|
return [solution];
|
|
}
|
|
|
|
return [];
|
|
}
|
|
|
|
/**
|
|
* Finds the closest point on the Bezier curve from another point
|
|
*
|
|
* @param x
|
|
* @param y
|
|
* @param P0
|
|
* @param P1
|
|
* @param P2
|
|
* @param P3
|
|
* @param tolerance
|
|
* @param maxLevel
|
|
* @returns
|
|
*/
|
|
export function curveClosestPoint<Point extends GlobalPoint | LocalPoint>(
|
|
c: Curve<Point>,
|
|
p: Point,
|
|
tolerance: number = 1e-3,
|
|
): Point | null {
|
|
const localMinimum = (
|
|
min: number,
|
|
max: number,
|
|
f: (t: number) => number,
|
|
e: number = tolerance,
|
|
) => {
|
|
let m = min;
|
|
let n = max;
|
|
let k;
|
|
|
|
while (n - m > e) {
|
|
k = (n + m) / 2;
|
|
if (f(k - e) < f(k + e)) {
|
|
n = k;
|
|
} else {
|
|
m = k;
|
|
}
|
|
}
|
|
|
|
return k;
|
|
};
|
|
|
|
const maxSteps = 30;
|
|
let closestStep = 0;
|
|
for (let min = Infinity, step = 0; step < maxSteps; step++) {
|
|
const d = pointDistance(p, bezierEquation(c, step / maxSteps));
|
|
if (d < min) {
|
|
min = d;
|
|
closestStep = step;
|
|
}
|
|
}
|
|
|
|
const t0 = Math.max((closestStep - 1) / maxSteps, 0);
|
|
const t1 = Math.min((closestStep + 1) / maxSteps, 1);
|
|
const solution = localMinimum(t0, t1, (t) =>
|
|
pointDistance(p, bezierEquation(c, t)),
|
|
);
|
|
|
|
if (!solution) {
|
|
return null;
|
|
}
|
|
|
|
return bezierEquation(c, solution);
|
|
}
|
|
|
|
/**
|
|
* Determines the distance between a point and the closest point on the
|
|
* Bezier curve.
|
|
*
|
|
* @param c The curve to test
|
|
* @param p The point to measure from
|
|
*/
|
|
export function curvePointDistance<Point extends GlobalPoint | LocalPoint>(
|
|
c: Curve<Point>,
|
|
p: Point,
|
|
) {
|
|
const closest = curveClosestPoint(c, p);
|
|
|
|
if (!closest) {
|
|
return 0;
|
|
}
|
|
|
|
return pointDistance(p, closest);
|
|
}
|
|
|
|
/**
|
|
* Determines if the parameter is a Curve
|
|
*/
|
|
export function isCurve<P extends GlobalPoint | LocalPoint>(
|
|
v: unknown,
|
|
): v is Curve<P> {
|
|
return (
|
|
Array.isArray(v) &&
|
|
v.length === 4 &&
|
|
isPoint(v[0]) &&
|
|
isPoint(v[1]) &&
|
|
isPoint(v[2]) &&
|
|
isPoint(v[3])
|
|
);
|
|
}
|
|
|
|
export function curveTangent<Point extends GlobalPoint | LocalPoint>(
|
|
[p0, p1, p2, p3]: Curve<Point>,
|
|
t: number,
|
|
) {
|
|
return vector(
|
|
-3 * (1 - t) * (1 - t) * p0[0] +
|
|
3 * (1 - t) * (1 - t) * p1[0] -
|
|
6 * t * (1 - t) * p1[0] -
|
|
3 * t * t * p2[0] +
|
|
6 * t * (1 - t) * p2[0] +
|
|
3 * t * t * p3[0],
|
|
-3 * (1 - t) * (1 - t) * p0[1] +
|
|
3 * (1 - t) * (1 - t) * p1[1] -
|
|
6 * t * (1 - t) * p1[1] -
|
|
3 * t * t * p2[1] +
|
|
6 * t * (1 - t) * p2[1] +
|
|
3 * t * t * p3[1],
|
|
);
|
|
}
|
|
|
|
export function curveCatmullRomQuadraticApproxPoints(
|
|
points: GlobalPoint[],
|
|
tension = 0.5,
|
|
) {
|
|
if (points.length < 2) {
|
|
return;
|
|
}
|
|
|
|
const pointSets: [GlobalPoint, GlobalPoint][] = [];
|
|
for (let i = 0; i < points.length - 1; i++) {
|
|
const p0 = points[i - 1 < 0 ? 0 : i - 1];
|
|
const p1 = points[i];
|
|
const p2 = points[i + 1 >= points.length ? points.length - 1 : i + 1];
|
|
const cpX = p1[0] + ((p2[0] - p0[0]) * tension) / 2;
|
|
const cpY = p1[1] + ((p2[1] - p0[1]) * tension) / 2;
|
|
|
|
pointSets.push([
|
|
pointFrom<GlobalPoint>(cpX, cpY),
|
|
pointFrom<GlobalPoint>(p2[0], p2[1]),
|
|
]);
|
|
}
|
|
|
|
return pointSets;
|
|
}
|
|
|
|
export function curveCatmullRomCubicApproxPoints<
|
|
Point extends GlobalPoint | LocalPoint,
|
|
>(points: Point[], tension = 0.5) {
|
|
if (points.length < 2) {
|
|
return;
|
|
}
|
|
|
|
const pointSets: Curve<Point>[] = [];
|
|
for (let i = 0; i < points.length - 1; i++) {
|
|
const p0 = points[i - 1 < 0 ? 0 : i - 1];
|
|
const p1 = points[i];
|
|
const p2 = points[i + 1 >= points.length ? points.length - 1 : i + 1];
|
|
const p3 = points[i + 2 >= points.length ? points.length - 1 : i + 2];
|
|
const tangent1 = [(p2[0] - p0[0]) * tension, (p2[1] - p0[1]) * tension];
|
|
const tangent2 = [(p3[0] - p1[0]) * tension, (p3[1] - p1[1]) * tension];
|
|
const cp1x = p1[0] + tangent1[0] / 3;
|
|
const cp1y = p1[1] + tangent1[1] / 3;
|
|
const cp2x = p2[0] - tangent2[0] / 3;
|
|
const cp2y = p2[1] - tangent2[1] / 3;
|
|
|
|
pointSets.push(
|
|
curve(
|
|
pointFrom(p1[0], p1[1]),
|
|
pointFrom(cp1x, cp1y),
|
|
pointFrom(cp2x, cp2y),
|
|
pointFrom(p2[0], p2[1]),
|
|
),
|
|
);
|
|
}
|
|
|
|
return pointSets;
|
|
}
|
|
|
|
export function curveOffsetPoints(
|
|
[p0, p1, p2, p3]: Curve<GlobalPoint>,
|
|
offset: number,
|
|
steps = 50,
|
|
) {
|
|
const offsetPoints = [];
|
|
|
|
for (let i = 0; i <= steps; i++) {
|
|
const t = i / steps;
|
|
const c = curve(p0, p1, p2, p3);
|
|
const point = bezierEquation(c, t);
|
|
const tangent = vectorNormalize(curveTangent(c, t));
|
|
const normal = vectorNormal(tangent);
|
|
|
|
offsetPoints.push(pointFromVector(vectorScale(normal, offset), point));
|
|
}
|
|
|
|
return offsetPoints;
|
|
}
|
|
|
|
export function offsetPointsForQuadraticBezier(
|
|
p0: GlobalPoint,
|
|
p1: GlobalPoint,
|
|
p2: GlobalPoint,
|
|
offsetDist: number,
|
|
steps = 50,
|
|
) {
|
|
const offsetPoints = [];
|
|
|
|
for (let i = 0; i <= steps; i++) {
|
|
const t = i / steps;
|
|
const t1 = 1 - t;
|
|
const point = pointFrom<GlobalPoint>(
|
|
t1 * t1 * p0[0] + 2 * t1 * t * p1[0] + t * t * p2[0],
|
|
t1 * t1 * p0[1] + 2 * t1 * t * p1[1] + t * t * p2[1],
|
|
);
|
|
const tangentX = 2 * (1 - t) * (p1[0] - p0[0]) + 2 * t * (p2[0] - p1[0]);
|
|
const tangentY = 2 * (1 - t) * (p1[1] - p0[1]) + 2 * t * (p2[1] - p1[1]);
|
|
const tangent = vectorNormalize(vector(tangentX, tangentY));
|
|
const normal = vectorNormal(tangent);
|
|
|
|
offsetPoints.push(pointFromVector(vectorScale(normal, offsetDist), point));
|
|
}
|
|
|
|
return offsetPoints;
|
|
}
|
|
|
|
/**
|
|
* Implementation based on Legendre-Gauss quadrature for more accurate arc
|
|
* length calculation.
|
|
*
|
|
* Reference: https://pomax.github.io/bezierinfo/#arclength
|
|
*
|
|
* @param c The curve to calculate the length of
|
|
* @returns The approximated length of the curve
|
|
*/
|
|
export function curveLength<P extends GlobalPoint | LocalPoint>(
|
|
c: Curve<P>,
|
|
): number {
|
|
const z2 = 0.5;
|
|
let sum = 0;
|
|
|
|
for (let i = 0; i < 24; i++) {
|
|
const t = z2 * LegendreGaussN24TValues[i] + z2;
|
|
const derivativeVector = curveTangent(c, t);
|
|
const magnitude = Math.sqrt(
|
|
derivativeVector[0] * derivativeVector[0] +
|
|
derivativeVector[1] * derivativeVector[1],
|
|
);
|
|
sum += LegendreGaussN24CValues[i] * magnitude;
|
|
}
|
|
|
|
return z2 * sum;
|
|
}
|
|
|
|
/**
|
|
* Calculates the curve length from t=0 to t=parameter using the same
|
|
* Legendre-Gauss quadrature method used in curveLength
|
|
*
|
|
* @param c The curve to calculate the partial length for
|
|
* @param t The parameter value (0 to 1) to calculate length up to
|
|
* @returns The length of the curve from beginning to parameter t
|
|
*/
|
|
export function curveLengthAtParameter<P extends GlobalPoint | LocalPoint>(
|
|
c: Curve<P>,
|
|
t: number,
|
|
): number {
|
|
if (t <= 0) {
|
|
return 0;
|
|
}
|
|
if (t >= 1) {
|
|
return curveLength(c);
|
|
}
|
|
|
|
// Scale and shift the integration interval from [0,t] to [-1,1]
|
|
// which is what the Legendre-Gauss quadrature expects
|
|
const z1 = t / 2;
|
|
const z2 = t / 2;
|
|
|
|
let sum = 0;
|
|
|
|
for (let i = 0; i < 24; i++) {
|
|
const parameter = z1 * LegendreGaussN24TValues[i] + z2;
|
|
const derivativeVector = curveTangent(c, parameter);
|
|
const magnitude = Math.sqrt(
|
|
derivativeVector[0] * derivativeVector[0] +
|
|
derivativeVector[1] * derivativeVector[1],
|
|
);
|
|
sum += LegendreGaussN24CValues[i] * magnitude;
|
|
}
|
|
|
|
return z1 * sum; // Scale the result back to the original interval
|
|
}
|
|
|
|
/**
|
|
* Calculates the point at a specific percentage of a curve's total length
|
|
* using binary search for improved efficiency and accuracy.
|
|
*
|
|
* @param c The curve to calculate point on
|
|
* @param percent A value between 0 and 1 representing the percentage of the curve's length
|
|
* @returns The point at the specified percentage of curve length
|
|
*/
|
|
export function curvePointAtLength<P extends GlobalPoint | LocalPoint>(
|
|
c: Curve<P>,
|
|
percent: number,
|
|
): P {
|
|
if (percent <= 0) {
|
|
return bezierEquation(c, 0);
|
|
}
|
|
|
|
if (percent >= 1) {
|
|
return bezierEquation(c, 1);
|
|
}
|
|
|
|
const totalLength = curveLength(c);
|
|
const targetLength = totalLength * percent;
|
|
|
|
// Binary search to find parameter t where length at t equals target length
|
|
let tMin = 0;
|
|
let tMax = 1;
|
|
let t = percent; // Start with a reasonable guess (t = percent)
|
|
let currentLength = 0;
|
|
|
|
// Tolerance for length comparison and iteration limit to avoid infinite loops
|
|
const tolerance = totalLength * 0.0001;
|
|
const maxIterations = 20;
|
|
|
|
for (let iteration = 0; iteration < maxIterations; iteration++) {
|
|
currentLength = curveLengthAtParameter(c, t);
|
|
const error = Math.abs(currentLength - targetLength);
|
|
|
|
if (error < tolerance) {
|
|
break;
|
|
}
|
|
|
|
if (currentLength < targetLength) {
|
|
tMin = t;
|
|
} else {
|
|
tMax = t;
|
|
}
|
|
|
|
t = (tMin + tMax) / 2;
|
|
}
|
|
|
|
return bezierEquation(c, t);
|
|
}
|
|
|
|
function bezierEquation<Point extends GlobalPoint | LocalPoint>(
|
|
c: Curve<Point>,
|
|
t: number,
|
|
) {
|
|
return pointFrom<Point>(
|
|
(1 - t) ** 3 * c[0][0] +
|
|
3 * (1 - t) ** 2 * t * c[1][0] +
|
|
3 * (1 - t) * t ** 2 * c[2][0] +
|
|
t ** 3 * c[3][0],
|
|
(1 - t) ** 3 * c[0][1] +
|
|
3 * (1 - t) ** 2 * t * c[1][1] +
|
|
3 * (1 - t) * t ** 2 * c[2][1] +
|
|
t ** 3 * c[3][1],
|
|
);
|
|
}
|
|
|
|
function gradient(
|
|
f: (t: number, s: number) => number,
|
|
t0: number,
|
|
s0: number,
|
|
delta: number = 1e-6,
|
|
): number[] {
|
|
return [
|
|
(f(t0 + delta, s0) - f(t0 - delta, s0)) / (2 * delta),
|
|
(f(t0, s0 + delta) - f(t0, s0 - delta)) / (2 * delta),
|
|
];
|
|
}
|
|
|
|
function solve(
|
|
f: (t: number, s: number) => [number, number],
|
|
t0: number,
|
|
s0: number,
|
|
tolerance: number = 1e-3,
|
|
iterLimit: number = 10,
|
|
): number[] | null {
|
|
let error = Infinity;
|
|
let iter = 0;
|
|
|
|
while (error >= tolerance) {
|
|
if (iter >= iterLimit) {
|
|
return null;
|
|
}
|
|
|
|
const y0 = f(t0, s0);
|
|
const jacobian = [
|
|
gradient((t, s) => f(t, s)[0], t0, s0),
|
|
gradient((t, s) => f(t, s)[1], t0, s0),
|
|
];
|
|
const b = [[-y0[0]], [-y0[1]]];
|
|
const det =
|
|
jacobian[0][0] * jacobian[1][1] - jacobian[0][1] * jacobian[1][0];
|
|
|
|
if (det === 0) {
|
|
return null;
|
|
}
|
|
|
|
const iJ = [
|
|
[jacobian[1][1] / det, -jacobian[0][1] / det],
|
|
[-jacobian[1][0] / det, jacobian[0][0] / det],
|
|
];
|
|
const h = [
|
|
[iJ[0][0] * b[0][0] + iJ[0][1] * b[1][0]],
|
|
[iJ[1][0] * b[0][0] + iJ[1][1] * b[1][0]],
|
|
];
|
|
|
|
t0 = t0 + h[0][0];
|
|
s0 = s0 + h[1][0];
|
|
|
|
const [tErr, sErr] = f(t0, s0);
|
|
error = Math.max(Math.abs(tErr), Math.abs(sErr));
|
|
iter += 1;
|
|
}
|
|
|
|
return [t0, s0];
|
|
}
|