import { isPoint, pointDistance, pointFrom, pointFromVector } from "./point"; import { rectangle, rectangleIntersectLineSegment } from "./rectangle"; import { vector, vectorNormal, vectorNormalize, vectorScale } from "./vector"; import { LegendreGaussN24CValues, LegendreGaussN24TValues } from "./constants"; import type { Curve, GlobalPoint, LineSegment, LocalPoint } from "./types"; /** * * @param a * @param b * @param c * @param d * @returns */ export function curve( a: Point, b: Point, c: Point, d: Point, ) { return [a, b, c, d] as Curve; } /** * Computes the intersection between a cubic spline and a line segment. */ export function curveIntersectLineSegment< Point extends GlobalPoint | LocalPoint, >(c: Curve, l: LineSegment): Point[] { // Optimize by doing a cheap bounding box check first const [p0, p1, p2, p3] = c; if ( rectangleIntersectLineSegment( rectangle( pointFrom( Math.min(p0[0], p1[0], p2[0], p3[0]), Math.min(p0[1], p1[1], p2[1], p3[1]), ), pointFrom( Math.max(p0[0], p1[0], p2[0], p3[0]), Math.max(p0[1], p1[1], p2[1], p3[1]), ), ), l, ).length === 0 ) { return []; } const line = (s: number) => pointFrom( l[0][0] + s * (l[1][0] - l[0][0]), l[0][1] + s * (l[1][1] - l[0][1]), ); const initial_guesses: [number, number][] = [ [0.5, 0], [0.2, 0], [0.8, 0], ]; const calculate = ([t0, s0]: [number, number]) => { const solution = solve( (t: number, s: number) => { const bezier_point = bezierEquation(c, t); const line_point = line(s); return [ bezier_point[0] - line_point[0], bezier_point[1] - line_point[1], ]; }, t0, s0, ); if (!solution) { return null; } const [t, s] = solution; if (t < 0 || t > 1 || s < 0 || s > 1) { return null; } return bezierEquation(c, t); }; let solution = calculate(initial_guesses[0]); if (solution) { return [solution]; } solution = calculate(initial_guesses[1]); if (solution) { return [solution]; } solution = calculate(initial_guesses[2]); if (solution) { return [solution]; } return []; } /** * Finds the closest point on the Bezier curve from another point * * @param x * @param y * @param P0 * @param P1 * @param P2 * @param P3 * @param tolerance * @param maxLevel * @returns */ export function curveClosestPoint( c: Curve, p: Point, tolerance: number = 1e-3, ): Point | null { const localMinimum = ( min: number, max: number, f: (t: number) => number, e: number = tolerance, ) => { let m = min; let n = max; let k; while (n - m > e) { k = (n + m) / 2; if (f(k - e) < f(k + e)) { n = k; } else { m = k; } } return k; }; const maxSteps = 30; let closestStep = 0; for (let min = Infinity, step = 0; step < maxSteps; step++) { const d = pointDistance(p, bezierEquation(c, step / maxSteps)); if (d < min) { min = d; closestStep = step; } } const t0 = Math.max((closestStep - 1) / maxSteps, 0); const t1 = Math.min((closestStep + 1) / maxSteps, 1); const solution = localMinimum(t0, t1, (t) => pointDistance(p, bezierEquation(c, t)), ); if (!solution) { return null; } return bezierEquation(c, solution); } /** * Determines the distance between a point and the closest point on the * Bezier curve. * * @param c The curve to test * @param p The point to measure from */ export function curvePointDistance( c: Curve, p: Point, ) { const closest = curveClosestPoint(c, p); if (!closest) { return 0; } return pointDistance(p, closest); } /** * Determines if the parameter is a Curve */ export function isCurve

( v: unknown, ): v is Curve

{ return ( Array.isArray(v) && v.length === 4 && isPoint(v[0]) && isPoint(v[1]) && isPoint(v[2]) && isPoint(v[3]) ); } export function curveTangent( [p0, p1, p2, p3]: Curve, t: number, ) { return vector( -3 * (1 - t) * (1 - t) * p0[0] + 3 * (1 - t) * (1 - t) * p1[0] - 6 * t * (1 - t) * p1[0] - 3 * t * t * p2[0] + 6 * t * (1 - t) * p2[0] + 3 * t * t * p3[0], -3 * (1 - t) * (1 - t) * p0[1] + 3 * (1 - t) * (1 - t) * p1[1] - 6 * t * (1 - t) * p1[1] - 3 * t * t * p2[1] + 6 * t * (1 - t) * p2[1] + 3 * t * t * p3[1], ); } export function curveCatmullRomQuadraticApproxPoints( points: GlobalPoint[], tension = 0.5, ) { if (points.length < 2) { return; } const pointSets: [GlobalPoint, GlobalPoint][] = []; for (let i = 0; i < points.length - 1; i++) { const p0 = points[i - 1 < 0 ? 0 : i - 1]; const p1 = points[i]; const p2 = points[i + 1 >= points.length ? points.length - 1 : i + 1]; const cpX = p1[0] + ((p2[0] - p0[0]) * tension) / 2; const cpY = p1[1] + ((p2[1] - p0[1]) * tension) / 2; pointSets.push([ pointFrom(cpX, cpY), pointFrom(p2[0], p2[1]), ]); } return pointSets; } export function curveCatmullRomCubicApproxPoints< Point extends GlobalPoint | LocalPoint, >(points: Point[], tension = 0.5) { if (points.length < 2) { return; } const pointSets: Curve[] = []; for (let i = 0; i < points.length - 1; i++) { const p0 = points[i - 1 < 0 ? 0 : i - 1]; const p1 = points[i]; const p2 = points[i + 1 >= points.length ? points.length - 1 : i + 1]; const p3 = points[i + 2 >= points.length ? points.length - 1 : i + 2]; const tangent1 = [(p2[0] - p0[0]) * tension, (p2[1] - p0[1]) * tension]; const tangent2 = [(p3[0] - p1[0]) * tension, (p3[1] - p1[1]) * tension]; const cp1x = p1[0] + tangent1[0] / 3; const cp1y = p1[1] + tangent1[1] / 3; const cp2x = p2[0] - tangent2[0] / 3; const cp2y = p2[1] - tangent2[1] / 3; pointSets.push( curve( pointFrom(p1[0], p1[1]), pointFrom(cp1x, cp1y), pointFrom(cp2x, cp2y), pointFrom(p2[0], p2[1]), ), ); } return pointSets; } export function curveOffsetPoints( [p0, p1, p2, p3]: Curve, offset: number, steps = 50, ) { const offsetPoints = []; for (let i = 0; i <= steps; i++) { const t = i / steps; const c = curve(p0, p1, p2, p3); const point = bezierEquation(c, t); const tangent = vectorNormalize(curveTangent(c, t)); const normal = vectorNormal(tangent); offsetPoints.push(pointFromVector(vectorScale(normal, offset), point)); } return offsetPoints; } export function offsetPointsForQuadraticBezier( p0: GlobalPoint, p1: GlobalPoint, p2: GlobalPoint, offsetDist: number, steps = 50, ) { const offsetPoints = []; for (let i = 0; i <= steps; i++) { const t = i / steps; const t1 = 1 - t; const point = pointFrom( t1 * t1 * p0[0] + 2 * t1 * t * p1[0] + t * t * p2[0], t1 * t1 * p0[1] + 2 * t1 * t * p1[1] + t * t * p2[1], ); const tangentX = 2 * (1 - t) * (p1[0] - p0[0]) + 2 * t * (p2[0] - p1[0]); const tangentY = 2 * (1 - t) * (p1[1] - p0[1]) + 2 * t * (p2[1] - p1[1]); const tangent = vectorNormalize(vector(tangentX, tangentY)); const normal = vectorNormal(tangent); offsetPoints.push(pointFromVector(vectorScale(normal, offsetDist), point)); } return offsetPoints; } /** * Implementation based on Legendre-Gauss quadrature for more accurate arc * length calculation. * * Reference: https://pomax.github.io/bezierinfo/#arclength * * @param c The curve to calculate the length of * @returns The approximated length of the curve */ export function curveLength

( c: Curve

, ): number { const z2 = 0.5; let sum = 0; for (let i = 0; i < 24; i++) { const t = z2 * LegendreGaussN24TValues[i] + z2; const derivativeVector = curveTangent(c, t); const magnitude = Math.sqrt( derivativeVector[0] * derivativeVector[0] + derivativeVector[1] * derivativeVector[1], ); sum += LegendreGaussN24CValues[i] * magnitude; } return z2 * sum; } /** * Calculates the curve length from t=0 to t=parameter using the same * Legendre-Gauss quadrature method used in curveLength * * @param c The curve to calculate the partial length for * @param t The parameter value (0 to 1) to calculate length up to * @returns The length of the curve from beginning to parameter t */ export function curveLengthAtParameter

( c: Curve

, t: number, ): number { if (t <= 0) { return 0; } if (t >= 1) { return curveLength(c); } // Scale and shift the integration interval from [0,t] to [-1,1] // which is what the Legendre-Gauss quadrature expects const z1 = t / 2; const z2 = t / 2; let sum = 0; for (let i = 0; i < 24; i++) { const parameter = z1 * LegendreGaussN24TValues[i] + z2; const derivativeVector = curveTangent(c, parameter); const magnitude = Math.sqrt( derivativeVector[0] * derivativeVector[0] + derivativeVector[1] * derivativeVector[1], ); sum += LegendreGaussN24CValues[i] * magnitude; } return z1 * sum; // Scale the result back to the original interval } /** * Calculates the point at a specific percentage of a curve's total length * using binary search for improved efficiency and accuracy. * * @param c The curve to calculate point on * @param percent A value between 0 and 1 representing the percentage of the curve's length * @returns The point at the specified percentage of curve length */ export function curvePointAtLength

( c: Curve

, percent: number, ): P { if (percent <= 0) { return bezierEquation(c, 0); } if (percent >= 1) { return bezierEquation(c, 1); } const totalLength = curveLength(c); const targetLength = totalLength * percent; // Binary search to find parameter t where length at t equals target length let tMin = 0; let tMax = 1; let t = percent; // Start with a reasonable guess (t = percent) let currentLength = 0; // Tolerance for length comparison and iteration limit to avoid infinite loops const tolerance = totalLength * 0.0001; const maxIterations = 20; for (let iteration = 0; iteration < maxIterations; iteration++) { currentLength = curveLengthAtParameter(c, t); const error = Math.abs(currentLength - targetLength); if (error < tolerance) { break; } if (currentLength < targetLength) { tMin = t; } else { tMax = t; } t = (tMin + tMax) / 2; } return bezierEquation(c, t); } function bezierEquation( c: Curve, t: number, ) { return pointFrom( (1 - t) ** 3 * c[0][0] + 3 * (1 - t) ** 2 * t * c[1][0] + 3 * (1 - t) * t ** 2 * c[2][0] + t ** 3 * c[3][0], (1 - t) ** 3 * c[0][1] + 3 * (1 - t) ** 2 * t * c[1][1] + 3 * (1 - t) * t ** 2 * c[2][1] + t ** 3 * c[3][1], ); } function gradient( f: (t: number, s: number) => number, t0: number, s0: number, delta: number = 1e-6, ): number[] { return [ (f(t0 + delta, s0) - f(t0 - delta, s0)) / (2 * delta), (f(t0, s0 + delta) - f(t0, s0 - delta)) / (2 * delta), ]; } function solve( f: (t: number, s: number) => [number, number], t0: number, s0: number, tolerance: number = 1e-3, iterLimit: number = 10, ): number[] | null { let error = Infinity; let iter = 0; while (error >= tolerance) { if (iter >= iterLimit) { return null; } const y0 = f(t0, s0); const jacobian = [ gradient((t, s) => f(t, s)[0], t0, s0), gradient((t, s) => f(t, s)[1], t0, s0), ]; const b = [[-y0[0]], [-y0[1]]]; const det = jacobian[0][0] * jacobian[1][1] - jacobian[0][1] * jacobian[1][0]; if (det === 0) { return null; } const iJ = [ [jacobian[1][1] / det, -jacobian[0][1] / det], [-jacobian[1][0] / det, jacobian[0][0] / det], ]; const h = [ [iJ[0][0] * b[0][0] + iJ[0][1] * b[1][0]], [iJ[1][0] * b[0][0] + iJ[1][1] * b[1][0]], ]; t0 = t0 + h[0][0]; s0 = s0 + h[1][0]; const [tErr, sErr] = f(t0, s0); error = Math.max(Math.abs(tErr), Math.abs(sErr)); iter += 1; } return [t0, s0]; }