408 lines
11 KiB
TypeScript
408 lines
11 KiB
TypeScript
import {
|
|
isTransparent,
|
|
elementCenterPoint,
|
|
arrayToMap,
|
|
} from "@excalidraw/common";
|
|
import {
|
|
curveIntersectLineSegment,
|
|
isCurve,
|
|
isLineSegment,
|
|
isPointWithinBounds,
|
|
lineSegment,
|
|
lineSegmentIntersectionPoints,
|
|
pointFrom,
|
|
pointFromVector,
|
|
pointRotateRads,
|
|
pointsEqual,
|
|
vectorFromPoint,
|
|
vectorNormalize,
|
|
vectorScale,
|
|
} from "@excalidraw/math";
|
|
|
|
import {
|
|
ellipse,
|
|
ellipseSegmentInterceptPoints,
|
|
} from "@excalidraw/math/ellipse";
|
|
|
|
import type {
|
|
Curve,
|
|
GlobalPoint,
|
|
LineSegment,
|
|
Radians,
|
|
} from "@excalidraw/math";
|
|
|
|
import type { FrameNameBounds } from "@excalidraw/excalidraw/types";
|
|
|
|
import { getElementBounds } from "./bounds";
|
|
import {
|
|
hasBoundTextElement,
|
|
isFreeDrawElement,
|
|
isIframeLikeElement,
|
|
isImageElement,
|
|
isLinearElement,
|
|
isTextElement,
|
|
} from "./typeChecks";
|
|
import {
|
|
deconstructDiamondElement,
|
|
deconstructLinearOrFreeDrawElement,
|
|
deconstructRectanguloidElement,
|
|
isPathALoop,
|
|
} from "./utils";
|
|
|
|
import { getBoundTextElement } from "./textElement";
|
|
|
|
import { LinearElementEditor } from "./linearElementEditor";
|
|
|
|
import { distanceToElement } from "./distance";
|
|
|
|
import type {
|
|
ElementsMap,
|
|
ExcalidrawDiamondElement,
|
|
ExcalidrawElement,
|
|
ExcalidrawEllipseElement,
|
|
ExcalidrawFreeDrawElement,
|
|
ExcalidrawLinearElement,
|
|
ExcalidrawRectanguloidElement,
|
|
} from "./types";
|
|
|
|
export const shouldTestInside = (element: ExcalidrawElement) => {
|
|
if (element.type === "arrow") {
|
|
return false;
|
|
}
|
|
|
|
const isDraggableFromInside =
|
|
!isTransparent(element.backgroundColor) ||
|
|
hasBoundTextElement(element) ||
|
|
isIframeLikeElement(element) ||
|
|
isTextElement(element);
|
|
|
|
if (element.type === "line") {
|
|
return isDraggableFromInside && isPathALoop(element.points);
|
|
}
|
|
|
|
if (element.type === "freedraw") {
|
|
return isDraggableFromInside && isPathALoop(element.points);
|
|
}
|
|
|
|
return isDraggableFromInside || isImageElement(element);
|
|
};
|
|
|
|
export type HitTestArgs = {
|
|
point: GlobalPoint;
|
|
element: ExcalidrawElement;
|
|
threshold?: number;
|
|
frameNameBound?: FrameNameBounds | null;
|
|
};
|
|
|
|
export const hitElementItself = ({
|
|
point,
|
|
element,
|
|
threshold = 10,
|
|
frameNameBound = null,
|
|
}: HitTestArgs) => {
|
|
// First check if the element is in the bounding box because it's MUCH faster
|
|
// than checking if the point is in the element's shape
|
|
let hit = hitElementBoundingBox(
|
|
point,
|
|
element,
|
|
arrayToMap([element]),
|
|
threshold,
|
|
)
|
|
? shouldTestInside(element)
|
|
? // Since `inShape` tests STRICTLY againt the insides of a shape
|
|
// we would need `onShape` as well to include the "borders"
|
|
isPointInShape(point, element) ||
|
|
isPointOnShape(point, element, threshold)
|
|
: isPointOnShape(point, element, threshold)
|
|
: false;
|
|
|
|
// hit test against a frame's name
|
|
if (!hit && frameNameBound) {
|
|
const x1 = frameNameBound.x - threshold;
|
|
const y1 = frameNameBound.y - threshold;
|
|
const x2 = frameNameBound.x + frameNameBound.width + threshold;
|
|
const y2 = frameNameBound.y + frameNameBound.height + threshold;
|
|
hit = isPointWithinBounds(pointFrom(x1, y1), point, pointFrom(x2, y2));
|
|
}
|
|
|
|
return hit;
|
|
};
|
|
|
|
export const hitElementBoundingBox = (
|
|
point: GlobalPoint,
|
|
element: ExcalidrawElement,
|
|
elementsMap: ElementsMap,
|
|
tolerance = 0,
|
|
) => {
|
|
let [x1, y1, x2, y2] = getElementBounds(element, elementsMap);
|
|
x1 -= tolerance;
|
|
y1 -= tolerance;
|
|
x2 += tolerance;
|
|
y2 += tolerance;
|
|
return isPointWithinBounds(pointFrom(x1, y1), point, pointFrom(x2, y2));
|
|
};
|
|
|
|
export const hitElementBoundingBoxOnly = (
|
|
hitArgs: HitTestArgs,
|
|
elementsMap: ElementsMap,
|
|
) => {
|
|
return (
|
|
!hitElementItself(hitArgs) &&
|
|
// bound text is considered part of the element (even if it's outside the bounding box)
|
|
!hitElementBoundText(hitArgs.point, hitArgs.element, elementsMap) &&
|
|
hitElementBoundingBox(hitArgs.point, hitArgs.element, elementsMap)
|
|
);
|
|
};
|
|
|
|
export const hitElementBoundText = (
|
|
point: GlobalPoint,
|
|
element: ExcalidrawElement,
|
|
elementsMap: ElementsMap,
|
|
): boolean => {
|
|
const boundTextElementCandidate = getBoundTextElement(element, elementsMap);
|
|
|
|
if (!boundTextElementCandidate) {
|
|
return false;
|
|
}
|
|
const boundTextElement = isLinearElement(element)
|
|
? {
|
|
...boundTextElementCandidate,
|
|
// arrow's bound text accurate position is not stored in the element's property
|
|
// but rather calculated and returned from the following static method
|
|
...LinearElementEditor.getBoundTextElementPosition(
|
|
element,
|
|
boundTextElementCandidate,
|
|
elementsMap,
|
|
),
|
|
}
|
|
: boundTextElementCandidate;
|
|
|
|
return isPointInShape(point, boundTextElement);
|
|
};
|
|
|
|
/**
|
|
* Intersect a line with an element for binding test
|
|
*
|
|
* @param element
|
|
* @param line
|
|
* @param offset
|
|
* @returns
|
|
*/
|
|
export const intersectElementWithLineSegment = (
|
|
element: ExcalidrawElement,
|
|
line: LineSegment<GlobalPoint>,
|
|
offset: number = 0,
|
|
): GlobalPoint[] => {
|
|
switch (element.type) {
|
|
case "rectangle":
|
|
case "image":
|
|
case "text":
|
|
case "iframe":
|
|
case "embeddable":
|
|
case "frame":
|
|
case "selection":
|
|
case "magicframe":
|
|
return intersectRectanguloidWithLineSegment(element, line, offset);
|
|
case "diamond":
|
|
return intersectDiamondWithLineSegment(element, line, offset);
|
|
case "ellipse":
|
|
return intersectEllipseWithLineSegment(element, line, offset);
|
|
case "line":
|
|
case "freedraw":
|
|
case "arrow":
|
|
return intersectLinearOrFreeDrawWithLineSegment(element, line);
|
|
}
|
|
};
|
|
|
|
const intersectLinearOrFreeDrawWithLineSegment = (
|
|
element: ExcalidrawLinearElement | ExcalidrawFreeDrawElement,
|
|
segment: LineSegment<GlobalPoint>,
|
|
): GlobalPoint[] => {
|
|
const shapes = deconstructLinearOrFreeDrawElement(element);
|
|
const intersections: GlobalPoint[] = [];
|
|
|
|
for (const shape of shapes) {
|
|
switch (true) {
|
|
case isCurve(shape):
|
|
intersections.push(
|
|
...curveIntersectLineSegment(shape as Curve<GlobalPoint>, segment),
|
|
);
|
|
continue;
|
|
case isLineSegment(shape):
|
|
const point = lineSegmentIntersectionPoints(
|
|
segment,
|
|
shape as LineSegment<GlobalPoint>,
|
|
);
|
|
|
|
if (point) {
|
|
intersections.push(point);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return intersections;
|
|
};
|
|
|
|
const intersectRectanguloidWithLineSegment = (
|
|
element: ExcalidrawRectanguloidElement,
|
|
l: LineSegment<GlobalPoint>,
|
|
offset: number = 0,
|
|
): GlobalPoint[] => {
|
|
const center = elementCenterPoint(element);
|
|
// To emulate a rotated rectangle we rotate the point in the inverse angle
|
|
// instead. It's all the same distance-wise.
|
|
const rotatedA = pointRotateRads<GlobalPoint>(
|
|
l[0],
|
|
center,
|
|
-element.angle as Radians,
|
|
);
|
|
const rotatedB = pointRotateRads<GlobalPoint>(
|
|
l[1],
|
|
center,
|
|
-element.angle as Radians,
|
|
);
|
|
|
|
// Get the element's building components we can test against
|
|
const [sides, corners] = deconstructRectanguloidElement(element, offset);
|
|
|
|
return (
|
|
// Test intersection against the sides, keep only the valid
|
|
// intersection points and rotate them back to scene space
|
|
sides
|
|
.map((s) =>
|
|
lineSegmentIntersectionPoints(
|
|
lineSegment<GlobalPoint>(rotatedA, rotatedB),
|
|
s,
|
|
),
|
|
)
|
|
.filter((x) => x != null)
|
|
.map((j) => pointRotateRads<GlobalPoint>(j!, center, element.angle))
|
|
// Test intersection against the corners which are cubic bezier curves,
|
|
// keep only the valid intersection points and rotate them back to scene
|
|
// space
|
|
.concat(
|
|
corners
|
|
.flatMap((t) =>
|
|
curveIntersectLineSegment(t, lineSegment(rotatedA, rotatedB)),
|
|
)
|
|
.filter((i) => i != null)
|
|
.map((j) => pointRotateRads(j, center, element.angle)),
|
|
)
|
|
// Remove duplicates
|
|
.filter(
|
|
(p, idx, points) => points.findIndex((d) => pointsEqual(p, d)) === idx,
|
|
)
|
|
);
|
|
};
|
|
|
|
/**
|
|
*
|
|
* @param element
|
|
* @param a
|
|
* @param b
|
|
* @returns
|
|
*/
|
|
const intersectDiamondWithLineSegment = (
|
|
element: ExcalidrawDiamondElement,
|
|
l: LineSegment<GlobalPoint>,
|
|
offset: number = 0,
|
|
): GlobalPoint[] => {
|
|
const center = elementCenterPoint(element);
|
|
|
|
// Rotate the point to the inverse direction to simulate the rotated diamond
|
|
// points. It's all the same distance-wise.
|
|
const rotatedA = pointRotateRads(l[0], center, -element.angle as Radians);
|
|
const rotatedB = pointRotateRads(l[1], center, -element.angle as Radians);
|
|
|
|
const [sides, curves] = deconstructDiamondElement(element, offset);
|
|
|
|
return (
|
|
sides
|
|
.map((s) =>
|
|
lineSegmentIntersectionPoints(
|
|
lineSegment<GlobalPoint>(rotatedA, rotatedB),
|
|
s,
|
|
),
|
|
)
|
|
.filter((p): p is GlobalPoint => p != null)
|
|
// Rotate back intersection points
|
|
.map((p) => pointRotateRads<GlobalPoint>(p!, center, element.angle))
|
|
.concat(
|
|
curves
|
|
.flatMap((p) =>
|
|
curveIntersectLineSegment(p, lineSegment(rotatedA, rotatedB)),
|
|
)
|
|
.filter((p) => p != null)
|
|
// Rotate back intersection points
|
|
.map((p) => pointRotateRads(p, center, element.angle)),
|
|
)
|
|
// Remove duplicates
|
|
.filter(
|
|
(p, idx, points) => points.findIndex((d) => pointsEqual(p, d)) === idx,
|
|
)
|
|
);
|
|
};
|
|
|
|
/**
|
|
*
|
|
* @param element
|
|
* @param a
|
|
* @param b
|
|
* @returns
|
|
*/
|
|
const intersectEllipseWithLineSegment = (
|
|
element: ExcalidrawEllipseElement,
|
|
l: LineSegment<GlobalPoint>,
|
|
offset: number = 0,
|
|
): GlobalPoint[] => {
|
|
const center = elementCenterPoint(element);
|
|
|
|
const rotatedA = pointRotateRads(l[0], center, -element.angle as Radians);
|
|
const rotatedB = pointRotateRads(l[1], center, -element.angle as Radians);
|
|
|
|
return ellipseSegmentInterceptPoints(
|
|
ellipse(center, element.width / 2 + offset, element.height / 2 + offset),
|
|
lineSegment(rotatedA, rotatedB),
|
|
).map((p) => pointRotateRads(p, center, element.angle));
|
|
};
|
|
|
|
// check if the given point is considered on the given shape's border
|
|
const isPointOnShape = (
|
|
point: GlobalPoint,
|
|
element: ExcalidrawElement,
|
|
tolerance = 1,
|
|
) => distanceToElement(element, point) <= tolerance;
|
|
|
|
// check if the given point is considered inside the element's border
|
|
export const isPointInShape = (
|
|
point: GlobalPoint,
|
|
element: ExcalidrawElement,
|
|
) => {
|
|
if (
|
|
(isLinearElement(element) || isFreeDrawElement(element)) &&
|
|
!isPathALoop(element.points)
|
|
) {
|
|
// There isn't any "inside" for a non-looping path
|
|
return false;
|
|
}
|
|
|
|
const [x1, y1, x2, y2] = getElementBounds(element, new Map());
|
|
const center = pointFrom<GlobalPoint>((x1 + x2) / 2, (y1 + y2) / 2);
|
|
const otherPoint = pointFromVector(
|
|
vectorScale(
|
|
vectorNormalize(vectorFromPoint(point, center, 0.1)),
|
|
Math.max(element.width, element.height) * 2,
|
|
),
|
|
center,
|
|
);
|
|
const intersector = lineSegment(point, otherPoint);
|
|
const intersections = intersectElementWithLineSegment(
|
|
element,
|
|
intersector,
|
|
).filter((item, pos, arr) => arr.indexOf(item) === pos);
|
|
|
|
return intersections.length % 2 === 1;
|
|
};
|