408 lines
11 KiB
TypeScript

import {
isTransparent,
elementCenterPoint,
arrayToMap,
} from "@excalidraw/common";
import {
curveIntersectLineSegment,
isCurve,
isLineSegment,
isPointWithinBounds,
lineSegment,
lineSegmentIntersectionPoints,
pointFrom,
pointFromVector,
pointRotateRads,
pointsEqual,
vectorFromPoint,
vectorNormalize,
vectorScale,
} from "@excalidraw/math";
import {
ellipse,
ellipseSegmentInterceptPoints,
} from "@excalidraw/math/ellipse";
import type {
Curve,
GlobalPoint,
LineSegment,
Radians,
} from "@excalidraw/math";
import type { FrameNameBounds } from "@excalidraw/excalidraw/types";
import { getElementBounds } from "./bounds";
import {
hasBoundTextElement,
isFreeDrawElement,
isIframeLikeElement,
isImageElement,
isLinearElement,
isTextElement,
} from "./typeChecks";
import {
deconstructDiamondElement,
deconstructLinearOrFreeDrawElement,
deconstructRectanguloidElement,
isPathALoop,
} from "./utils";
import { getBoundTextElement } from "./textElement";
import { LinearElementEditor } from "./linearElementEditor";
import { distanceToElement } from "./distance";
import type {
ElementsMap,
ExcalidrawDiamondElement,
ExcalidrawElement,
ExcalidrawEllipseElement,
ExcalidrawFreeDrawElement,
ExcalidrawLinearElement,
ExcalidrawRectanguloidElement,
} from "./types";
export const shouldTestInside = (element: ExcalidrawElement) => {
if (element.type === "arrow") {
return false;
}
const isDraggableFromInside =
!isTransparent(element.backgroundColor) ||
hasBoundTextElement(element) ||
isIframeLikeElement(element) ||
isTextElement(element);
if (element.type === "line") {
return isDraggableFromInside && isPathALoop(element.points);
}
if (element.type === "freedraw") {
return isDraggableFromInside && isPathALoop(element.points);
}
return isDraggableFromInside || isImageElement(element);
};
export type HitTestArgs = {
point: GlobalPoint;
element: ExcalidrawElement;
threshold?: number;
frameNameBound?: FrameNameBounds | null;
};
export const hitElementItself = ({
point,
element,
threshold = 10,
frameNameBound = null,
}: HitTestArgs) => {
// First check if the element is in the bounding box because it's MUCH faster
// than checking if the point is in the element's shape
let hit = hitElementBoundingBox(
point,
element,
arrayToMap([element]),
threshold,
)
? shouldTestInside(element)
? // Since `inShape` tests STRICTLY againt the insides of a shape
// we would need `onShape` as well to include the "borders"
isPointInShape(point, element) ||
isPointOnShape(point, element, threshold)
: isPointOnShape(point, element, threshold)
: false;
// hit test against a frame's name
if (!hit && frameNameBound) {
const x1 = frameNameBound.x - threshold;
const y1 = frameNameBound.y - threshold;
const x2 = frameNameBound.x + frameNameBound.width + threshold;
const y2 = frameNameBound.y + frameNameBound.height + threshold;
hit = isPointWithinBounds(pointFrom(x1, y1), point, pointFrom(x2, y2));
}
return hit;
};
export const hitElementBoundingBox = (
point: GlobalPoint,
element: ExcalidrawElement,
elementsMap: ElementsMap,
tolerance = 0,
) => {
let [x1, y1, x2, y2] = getElementBounds(element, elementsMap);
x1 -= tolerance;
y1 -= tolerance;
x2 += tolerance;
y2 += tolerance;
return isPointWithinBounds(pointFrom(x1, y1), point, pointFrom(x2, y2));
};
export const hitElementBoundingBoxOnly = (
hitArgs: HitTestArgs,
elementsMap: ElementsMap,
) => {
return (
!hitElementItself(hitArgs) &&
// bound text is considered part of the element (even if it's outside the bounding box)
!hitElementBoundText(hitArgs.point, hitArgs.element, elementsMap) &&
hitElementBoundingBox(hitArgs.point, hitArgs.element, elementsMap)
);
};
export const hitElementBoundText = (
point: GlobalPoint,
element: ExcalidrawElement,
elementsMap: ElementsMap,
): boolean => {
const boundTextElementCandidate = getBoundTextElement(element, elementsMap);
if (!boundTextElementCandidate) {
return false;
}
const boundTextElement = isLinearElement(element)
? {
...boundTextElementCandidate,
// arrow's bound text accurate position is not stored in the element's property
// but rather calculated and returned from the following static method
...LinearElementEditor.getBoundTextElementPosition(
element,
boundTextElementCandidate,
elementsMap,
),
}
: boundTextElementCandidate;
return isPointInShape(point, boundTextElement);
};
/**
* Intersect a line with an element for binding test
*
* @param element
* @param line
* @param offset
* @returns
*/
export const intersectElementWithLineSegment = (
element: ExcalidrawElement,
line: LineSegment<GlobalPoint>,
offset: number = 0,
): GlobalPoint[] => {
switch (element.type) {
case "rectangle":
case "image":
case "text":
case "iframe":
case "embeddable":
case "frame":
case "selection":
case "magicframe":
return intersectRectanguloidWithLineSegment(element, line, offset);
case "diamond":
return intersectDiamondWithLineSegment(element, line, offset);
case "ellipse":
return intersectEllipseWithLineSegment(element, line, offset);
case "line":
case "freedraw":
case "arrow":
return intersectLinearOrFreeDrawWithLineSegment(element, line);
}
};
const intersectLinearOrFreeDrawWithLineSegment = (
element: ExcalidrawLinearElement | ExcalidrawFreeDrawElement,
segment: LineSegment<GlobalPoint>,
): GlobalPoint[] => {
const shapes = deconstructLinearOrFreeDrawElement(element);
const intersections: GlobalPoint[] = [];
for (const shape of shapes) {
switch (true) {
case isCurve(shape):
intersections.push(
...curveIntersectLineSegment(shape as Curve<GlobalPoint>, segment),
);
continue;
case isLineSegment(shape):
const point = lineSegmentIntersectionPoints(
segment,
shape as LineSegment<GlobalPoint>,
);
if (point) {
intersections.push(point);
}
continue;
}
}
return intersections;
};
const intersectRectanguloidWithLineSegment = (
element: ExcalidrawRectanguloidElement,
l: LineSegment<GlobalPoint>,
offset: number = 0,
): GlobalPoint[] => {
const center = elementCenterPoint(element);
// To emulate a rotated rectangle we rotate the point in the inverse angle
// instead. It's all the same distance-wise.
const rotatedA = pointRotateRads<GlobalPoint>(
l[0],
center,
-element.angle as Radians,
);
const rotatedB = pointRotateRads<GlobalPoint>(
l[1],
center,
-element.angle as Radians,
);
// Get the element's building components we can test against
const [sides, corners] = deconstructRectanguloidElement(element, offset);
return (
// Test intersection against the sides, keep only the valid
// intersection points and rotate them back to scene space
sides
.map((s) =>
lineSegmentIntersectionPoints(
lineSegment<GlobalPoint>(rotatedA, rotatedB),
s,
),
)
.filter((x) => x != null)
.map((j) => pointRotateRads<GlobalPoint>(j!, center, element.angle))
// Test intersection against the corners which are cubic bezier curves,
// keep only the valid intersection points and rotate them back to scene
// space
.concat(
corners
.flatMap((t) =>
curveIntersectLineSegment(t, lineSegment(rotatedA, rotatedB)),
)
.filter((i) => i != null)
.map((j) => pointRotateRads(j, center, element.angle)),
)
// Remove duplicates
.filter(
(p, idx, points) => points.findIndex((d) => pointsEqual(p, d)) === idx,
)
);
};
/**
*
* @param element
* @param a
* @param b
* @returns
*/
const intersectDiamondWithLineSegment = (
element: ExcalidrawDiamondElement,
l: LineSegment<GlobalPoint>,
offset: number = 0,
): GlobalPoint[] => {
const center = elementCenterPoint(element);
// Rotate the point to the inverse direction to simulate the rotated diamond
// points. It's all the same distance-wise.
const rotatedA = pointRotateRads(l[0], center, -element.angle as Radians);
const rotatedB = pointRotateRads(l[1], center, -element.angle as Radians);
const [sides, curves] = deconstructDiamondElement(element, offset);
return (
sides
.map((s) =>
lineSegmentIntersectionPoints(
lineSegment<GlobalPoint>(rotatedA, rotatedB),
s,
),
)
.filter((p): p is GlobalPoint => p != null)
// Rotate back intersection points
.map((p) => pointRotateRads<GlobalPoint>(p!, center, element.angle))
.concat(
curves
.flatMap((p) =>
curveIntersectLineSegment(p, lineSegment(rotatedA, rotatedB)),
)
.filter((p) => p != null)
// Rotate back intersection points
.map((p) => pointRotateRads(p, center, element.angle)),
)
// Remove duplicates
.filter(
(p, idx, points) => points.findIndex((d) => pointsEqual(p, d)) === idx,
)
);
};
/**
*
* @param element
* @param a
* @param b
* @returns
*/
const intersectEllipseWithLineSegment = (
element: ExcalidrawEllipseElement,
l: LineSegment<GlobalPoint>,
offset: number = 0,
): GlobalPoint[] => {
const center = elementCenterPoint(element);
const rotatedA = pointRotateRads(l[0], center, -element.angle as Radians);
const rotatedB = pointRotateRads(l[1], center, -element.angle as Radians);
return ellipseSegmentInterceptPoints(
ellipse(center, element.width / 2 + offset, element.height / 2 + offset),
lineSegment(rotatedA, rotatedB),
).map((p) => pointRotateRads(p, center, element.angle));
};
// check if the given point is considered on the given shape's border
const isPointOnShape = (
point: GlobalPoint,
element: ExcalidrawElement,
tolerance = 1,
) => distanceToElement(element, point) <= tolerance;
// check if the given point is considered inside the element's border
export const isPointInShape = (
point: GlobalPoint,
element: ExcalidrawElement,
) => {
if (
(isLinearElement(element) || isFreeDrawElement(element)) &&
!isPathALoop(element.points)
) {
// There isn't any "inside" for a non-looping path
return false;
}
const [x1, y1, x2, y2] = getElementBounds(element, new Map());
const center = pointFrom<GlobalPoint>((x1 + x2) / 2, (y1 + y2) / 2);
const otherPoint = pointFromVector(
vectorScale(
vectorNormalize(vectorFromPoint(point, center, 0.1)),
Math.max(element.width, element.height) * 2,
),
center,
);
const intersector = lineSegment(point, otherPoint);
const intersections = intersectElementWithLineSegment(
element,
intersector,
).filter((item, pos, arr) => arr.indexOf(item) === pos);
return intersections.length % 2 === 1;
};